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Rigorous Full-Wave Analysis of Microstrip

Transmission St~ctures
Bin Song and Junmei Fu

Abstract-A boundary-element technique is proposed for the
rigorous fuil-wave study of a generalized microstrip transmission
configuration. The method is accurate and covers the metalliza-
tion th]ckness, mounting grooves, and arbitrary cross sections.

Comparison of the obtained results with data available in litera-’

ture shows the efficiency of this approach.

I. INTRODUCTION

F OR FULL-WAVE analysis of microstrip lines, many

methods exist. However, most of the methods either have

restricted application or require a large computer memory

and long computing time, e.g., the modified mode-matching

technique [1] and the transverse resonance method [2] can only

study structures of regular cross sections, and a few numerical

technique, e.g., the finite-element method (FEM) may handle

arbitrary cross-sectiomd geometries [3], but the number of

nodal points divided is very large, so the CPU time required

is considerable. In this letter, we present a very general

boundary-element procedure which can analyze generalized

microstrip configurations of arbitrary cross sections including

finite-metallization thickness, substrate mounting grooves,

asymmetric structures, and more than one dielectric region.

The bound~-element method (BEM) with constant elements

has been applied to calculating dispersion characteristics of

finlines by Song and Fu [4]. In this contribution, the BEM

with line elements is described for the full-wave investigation

of generalized microstrip transmission structures.

II. THEORY

Consider a waveguide of arbitrary shape that is uniform

in the Z direction and that consists of isotropic, lossless

dielectric media, The cross section can be divided into several

subregions homogeneously filled with a dielectric material.

Assumed that the electromagnetic wave propagates along the

Z direction of the form e~(~t–~z) and in a typical subregion

Si, the longitudinal field components satisfy the Helmholtz’s

equation

V:EZ + k:Ez = O, (la)

V:”g. + k:llz = o, (lb)

where V? is the transverse Laplacian operator, and kC is
2 z k? – ~2, here k~the cut-off wavenumber, namely, kC

is the wavenumber in the subregion. Using the method of
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Fig. 1. Two-dlimensional region surrounded by ,boundary L.

weighted residuals [5], from (1) the following equations can

be obtained,

L

Here, G(ra, Tj) is Green’s function in two-dimensional free-

space. The position of a nodal point inside subregion is

represented by the vector Ti, and that on boundmy L is denoted

by the vector Tj. & and t refer to the outward unit normal

vector and the tangential unit normal vector, respectively, as

shown in Fig. 1.

Assumed that the boundary L is smooth, letting T; ap-

proaches the boundary and considering Gauss’ principle and

Cauchy’s principal value of integration, and using the follow-

ing equations

(jwp 8HZ /3 8EZ
Et=F ~–—-.—

c W,u i% )

Ht = –~
“(

dEz ,6’ (9Hz

)
~+~”~ . (3)

c
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Equation (2) can be rewritten as

/
= G(riTj) – &-I(Tj)d

L

(+)Hz(”i)+/aG&’’)Hz(’’)dz
L

/
= G(w-j) &#t(@ dl

L

(4a)

(4b)

Dividing the boundary L into iV line elements, and (4) is

then discretized as

(5a)

where Hz], E~j, Ht ~, Htj (j = 1, 2)are the field quantities on
the two nodes of eth element. The coefficients aj, bj, Cj (~ =

1,2) are contributions of the eth element to integration, and

they may be calculated with Gaussian integration. Equation

(5) can be represented in the following matrix form:

[A][EZ] + ~[B][Ht] - :[C][HZ] = O (6a)
L

[A][H3] - ~[B][Ht] + $[C][EZ] = O. (6b)

In the same way for subregion S3, the boundary matrix
equation similar to (6) can be formed. Considering the bound-

ary conditions along the common interface between contiguous

subregions, namely, the continuity of the tangential electric

and magnetic fields, it is required the following equations,

@d = @); H(t) = @;

& = &). H?t) = #.
t (7)

So the final boundary matrix equation of the whole region can

be obtained, and can be written as a homogeneous equations

set in the form

[U][x] = o, (8)
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Fig. 2. Dispersion characteristics of a shielded microstrip line: (a = b =
12.7 mm, x1 = x2 = 5.715 mm; c = 1 27 mm; t = 0.005 mm;

~, = 8.875) t=0.005mrn, ———-t =0.
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Fig. 3. Dispersion characteristics of the suspended microstrip line:
(a = 2b= 7.112 mm h~ = 0.635 mm frl = hs = 1.4605 mrw w = 1.0
mrnt=0.005 mm; e=O.O1mrn ~r=9.6)oooot=e+O;
t = 0.005 mm. e = 0.01 mm.

where the elements of matrix [u] are all the functions of phase

constant /3 and [X] contains the unknown E,, Hz, Et and Ht
on the boundaty. Considering the condition that makes (7)

exist nonzero solutions, namely,

/ul = o, (9)

the propagation constant /? can be obtained.

In this process, -(j/4) ~~2)(kC rij), which satisfies the
radiation condition, is employed as Green’s function, so no

spurious solutions appear. In addition, inhomogeneous dis-

cretization is used to enhance the accuracy of the results

obtained.

III. RESULTS

First of all, a shielded microstrip line treated with the mode-

matching technique in [1] is calculated with our method. In [1],

the finite-strip thickness is negligible, but in our calculation,
its effects is taken into account. From the obtained results, as

shown in Fig. 2, we can find that the propagation constants of
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the fundamental mode at high frequencies slightly decrease be-

cause the electromagnetic field is mainly concentrated between

the strip and the upper waveguide wall.

In order to show the flexibility of this method, a sus-

pended microstrip structure is studied. Calculated results for

the dispersion characteristics are shown in Fig. 3. The ob-

tained results for zero grooves depth and zero metallization

thickness are in agreement with data obtained via the trans-

verse resonance method [2]. For a finite-grooves depth and

finite-metallization thickness, the propagation constant of the

fundamental mode decreases. These BEM calculations are

performed with 118 nodes, while the

calculations need at least 400 nodes.

IV. CONCLUSION

corresponding FEM

In this letter, a boundary-element procedure for the rigorous

investigation of generalized microstrip structures is proposed,

the method has a few merits, i.e., it can ha~ndle generalized

microstrip configuration that, includes finite-strip thickness,

substrate mounting grooves, more than one dielectric region

and arbitrary cross-sectional geometries, moreover, it only

requires a small computer memory and short computation

time and the resulks obtained have fairly good accuracy. In

addition, this apprc)ach can be applied to the full-wave analysis

of various microwave and millimeter-wave transmission lines

with arbitrary cross-sectional geometries.
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