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Rigorous Full-Wave Analysis of Microstrip
Transmission Structures

Bin Song and Junmei Fu

Abstract— A boundary-element technique is proposed for the
rigorous full-wave study of a generalized microstrip transmission
configuration. The method is accurate and covers the metalliza-
tion thickness, mounting grooves, and arbitrary cross sections.
Comparison of the obtained results with data available in litera-'
ture shows the efficiency of this approach.

1. INTRODUCTION

OR FULL-WAVE analysis of microstrip lines, many

methods exist. However, most of the methods either have
restricted application or require a large computer memory
and long computing time, e.g., the modified mode-matching
technique [1] and the transverse resonance method [2] can only
study structures of regular cross sections, and a few numerical
technique, e.g., the finite-element method (FEM) may handle
arbitrary cross-sectional geometries [3], but the number of
nodal points divided is very large, so the CPU time required
is considerable. In this letter, we present a very géneral
boundary-element procedure which can analyze generalized
microstrip configurations of arbitrary cross sections including
finite-metallization thickness, substrated mounting grooves,
asymmetric structures, and more than one dielectric region.
The boundary-element method (BEM) with constant elements
has been applied to calculating dispersion characteristics of
finlines by Song and Fu [4]. In this contribution, the BEM
with line elements is described for the full-wave investigation
of generalized microstrip transmission structures.

II. THEORY

Consider a waveguide of arbitrary shape that is uniform
in the Z direction and that consists of isotropic, lossless
dielectric media. The cross section can be divided into several
subregions homogeneously filled with a dielectric material.
Assumed that the electromagnetic wave propagates along the
Z direction of the form e/(“*~52) and in a typical subregion
S;, the longitudinal field components satisfy the Helmholtz’s
equation

(1a)
(1b)

VZE. + k?E, = 0,
ViH. +kZH, =0,

where V? is the transverse Laplacian operator, and k. is
the cut-off wavenumber, namely, k2 = kZ — %, here k;
is the wavenumber in the gsubregion. Using the method of
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Fig. 1. Two-dimensional region surrounded by boundary L.

weighted residuals [5], from (1) the following equations can
be obtained,
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Here, G(r;,r;) is Green’s function in two-dimensional free-
space. The position of a nodal point inside subregion is
represented by the vector r;, and that on boundary L is denoted
by the vector rj. n and ¢ refer to the outward unit normal
vector and the tangential unit normal vector, respectively, as
shown in Fig. 1.

Assumed that the boundary L is smooth, letting »; ap-
proaches the boundary and considering Gauss’ principle and
Cauchy’s principal value of integration, and using the follow-
ing equations
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Equation (2) can be rewritten as
1 8G(’I’i,’l‘j)
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Dividing the boundary L into N line elements, and (4) is
then discretized as

N. N
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where H

29, B2y Hyj, Hy (5 = 1,2)are the field quantities on
the two nodes of eth element. The coefficients a;,b;,¢;(j =
1,2) are contributions of the eth element to integration, and
they may be calculated with Gaussian integration. Equation
(5) can be represented in the following matrix form:

Al + = (B - Lol =0 e
2
(AllE.] ~ 2 (B + Lami=o @

In the same way for subregion S,. the boundary matrix
equation similar to (6) can be formed. Considering thie bound-
ary conditions along the common interface between contiguous
subregions, namely, the continuity of the tangential electric
and magnetic fields, it is required the following equations,

EY =EY;  HY =HY;
Et(i) — Et(J)' Ht(Z) — Ht(j)‘ )
So the final boundary matrix equation of the whole region can

be obtained, and can be written as a homogeneous equations
set in the form

W]X]=0, ®)
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Fig. 2. Dispersion characteristics of a shielded microstrip line: (¢ = b =

12.7 mm; x1 = x2 = 5.715 mm; ¢ = 127 mm; ¢ = 0.005 mm;
£, = 8.875) t=0.005mm; —— — —¢t=0.
%,
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Fig. 3. Dispersion characteristics of the suspended microstrip line:
(@ =2b="7.112 mm; hg = 0.635 mm; h; = h3 = 1.4605 mm; w = 1.0
mm; ¢ = 0.005 mm; e = 0.0l mm; & =9.6)o000t=e=0;
t = 0.005 mm, e = 0.01 mm.

where the elements of matrix [U] are all the functions of phase
constant 3 and [X] contains the unknown E,, H,, E; and H,
on the boundary. Considering the condition that makes (7)
exist nonzero solutions, namely,

|U| =0, )

the propagation constant 3 can be obtained.

In this process, ~(j/4)ng)(kc Ti;), which satisfies the
radiation condition. is employed as Green’s function, so no
spurious solutions appear. In addition, inhomogeneous dis-
cretization is used to enhance the accuracy of the results
obtained.

III. RESULTS

First of all, a shielded microstrip line treated with the mode-
matching technique in [1] is calculated with our method. In [1],
the finite-strip thickness is negligible, but in our calculation,
its effects is taken into account. From the obtained results, as
shown in Fig. 2, we can find that the propagation constants of
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the fundamental mode at high frequencies slightly decrease be-
cause the electromagnetic field is mainly concentrated between
the strip and the upper waveguide wall.

In order to show the flexibility of this method, a sus-
pended microstrip structure is studied. Calculated results for
the dispersion characteristics are shown in Fig. 3. The ob-
tained results for zero grooves depth and zero metallization
thickness are in agreement with data obtained via the trans-
verse resonance method [2]. For a finite-grooves depth and
finite-metallization thickness, the propagation constant of the
fundamental mode decreases. These BEM calculations are
performed with 118 nodes, while the corresponding FEM
calculations need at least 400 nodes.

IV. CONCLUSION

In this letter, a boundary-element procedure for the rigorous
investigation of generalized microstrip structures is proposed,
the method has a few merits, i.e., it can handle generalized
microstrip configuration that includes finite-strip thickness,

substrate mounting grooves, more than one dielectric region
and arbitrary cross-sectional geometries, moreover, it only
requires a small computer memory and short computation
time and the results obtained have fairly good accuracy. In
addition, this approach can be applied to the full-wave analysis
of various microwave and millimeter-wave transmission lines
with arbitrary cross-sectional geometries.
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